Benha University		Final Term Exam		
Faculty of Engineering- Shoubra	it is	Date: 26 / 5 / 2015		
Eng. Mathematics & Physics Department		Operations Research EM	M 406	
Qualifying Studies (Mathematics)	BENHA UNIVERSIT	Duration: 3 hours		
• Answer All questions The exam consists	of one page • No. of que	stions: 4 Total Mark	: 200	
[1](a)Write the mathematical form of ma	athematical programmi	ng problem.	30	
Also, classify the mathematical pro	ogramming problems.		• •	
(b)Write the dual problem of the LP pro	oblem:		30	
maximize $f = -2x + 2y$				
s.t $3x + y \le 12, -x + y = 6$	$, x + y \ge 8, x, y \ge 0$			
[2]Solve the LP problems:			30	
(a) maximize $I = 3x + y + 4z$			50	
S.t $x + y + 2z \ge 10$ 2x + 3y + 2z = 18				
$2x + 3y + 2z = 10$ $x + 2y + 2z \ge 6$	$z \geq 0$			
$\mathbf{x} + 2\mathbf{y} + 2\mathbf{z} = 0, \mathbf{x}, \mathbf{y},$, 2 = 0			
(b)minimize $f = -x + 3y - 3z$				
s.t $2x + y - z \le 4$, $4x - 3y$	$\mathbf{y} \leq 2, -3\mathbf{x} + 2\mathbf{y} + \mathbf{z}$	$\leq 3, x, y, z \geq 0$	30	
[3](a) State the definition of convex set.			5	
(b) State the definition of concave funct	ion.		5	
(c)Prove that:				
(i)The minimum of a strict convex fur	nction f on a convex se	t $\mathbf{G} \subset \mathbf{R}^{\mathbf{n}}$ if exist	20	
must				
be unique.			20	
(ii)The minimum of a non constant fur	nction f on a convex s	et $\mathbf{G} \subset \mathbf{R}^{\mathbf{n}}$ can not be		
attained at interior point.				
			30	
[4]A company makes desk organizers.	The standard model re	equires 2 hours of the		
cutter time and one hour of the finisher time. The deluxe model requires one hour of				
the cutter time and 2 hours of the finis	sner time. The cutter f	has 104 nours of time		
for work. The standard model brings a profit of LE 5 per unit, while the deluge				
model brings a profit of LE 9 per unit. The company wishes to make the most profit				
How much of each model should be made in each month				

		Good Luck	
Examiners Board	: Dr. Mohamed Eid	Dr. Kallid Elnagar	Dr. Zaki Ahmed

Model Answer

Question 1

(a) A mathematical programming problem can be formulated as follows:

maximize (or minimize) f(x)

subject to $M = \{x \in \mathbb{R}^n : g_r(x) \le 0, r = 1, 2, ..., m\}$

f(x) is called the objective function

x is the vector of the variables (decision variables, unknowns) $g_r(x) \le 0, r = 1, 2, ..., m$ are constraints. M is called the feasible domain of the problem which is formed by the constraints.

The mathematical programming problems can be classified as:

1- Linear programming (LP) problems when f(x) and $g_r(x) \le 0$, r = 1, 2, ..., m are linear functions. It take the form

Maximize (or minimize) $f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n$ subject to $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$ $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$ $x_1, x_2, ..., x_n \ge 0.$

This problem can be written in matrix form as follows:

Maximize (or minimize) f(x) = C xs.t $Ax \le B, x \ge 0$

- 2- Non linear programming problems if f(x) is non linear or either one from $g_r(x) \le 0, r = 1, 2, ..., m$ is non linear function.
- 3- Quadratic programming problems if f(x) is quadratic function and $g_r(x) \le 0, r = 1, 2, ..., m$ are linear functions.
- 4- Integer programming problems if the decision variables are integers.
- 5- Mixed integer programming problems if some of the decision variables are integers.

------30 Marks

(b)The dual problem is:

Question 2

(a)The standard form of this problem is:

minimize
$$f = -x + 3y - 3z$$

s.t $2x + y - z + s_1 = 4$
 $4x - 3y + s_2 = 2$
 $-3x + 2y + z + s_3 = 3$, x, y, z, $s_1, s_2, s_3 \ge 0$

where s_1, s_2 and s_3 are slack variables.

The steps of the simplex method goes as:

B.V	X	У	Z	s 1	s2	s 3	Solu
S 1	2	1	-1	1	0	0	4
\$2	4	-3	0	0	1	0	2
52	-3	2	1	0	0	1	3
<u>\$3</u>							
f	1	-3	3	0	0	0	0
S 1	-1	3	0	1	0	1	7
\$2	4	-3	0	0	1	0	2
Z	-3	2	1	0	0	1	3
f	10	-9	0	0	0	-3	-9
S 1	0	9/4	0	1	1/4	1	15/2
Х	1	-3/4	0	0	1/4	0	1/2
Z	0	-1/4	1	0	3/4	1	9/2
f	0	-3/2	0	0	-5/2	-3	-14

This is the optimum case. Then, the optimal solution is: (x*, y*, z*) = (1/2, 0, 9/2) and the optimal value is f * = -14.

------30 Marks

(b) The standard form of this problem is:

maximize f = 3x + y + 4z

s.t
$$x + y + 2z + s_1 = 18$$

 $2x + 3y + 2z + u = 18$
 $x + 2y + 2z - t + v = 6$, x, y, z, s_1 , t, u, $v \ge 0$

where s_1 is slack variable, t is surplus variable and u, v are artificial variables.

Let w = u + v. Then, the objective of phase one is:

$$w + 3x + 5y + 4z - t = 24$$

The steps of phase one goes as table :

B.V	X	у	Z	t	s 1	u	v	Solu
s 1	1	1	2	0	1	0	0	18
u	2	3	2	0	0	1	0	18
v	1	2	2	-1	0	0	1	6
f	-3	-1	-4	0	0	0	0	0
w	3	5	4	-1	0	0	0	24
s 1	1/2	0	1	1/2	1	0	-1/2	15
u	1/2	0	-1	3/2	0	1	-3/2	9
у	1/2	1	1	-1/2	0	0	1/2	3
f	-3/2	0	-3	-1/2	0	0	1/2	3
W	1/2	0	-1	3/2	0	0	-5/2	9
s 1	1/3	0	4/3	0	1	-1/3	0	12
t	1/3	0		1	0	2/3	-1	6
У	-2/3			0	0	1/3	0	6
	2/3	1	2/3					
f	-4/3	0	-10/3	0	0	1/3	0	6
W	0	0	0	0	0	-1	-1	0

This is the end of phase one.

Phase two starts with the following table which is formed by deleting the columns of r, v and the row of w.

B.V	X	у	Z	t	S 1	Solu
s 1	1/3	0	4/3	0	1	12
t	1/3	0	-2/3	1	0	6
У	2/3	1	2/3	0	0	6
f	-4/3	0	-10/3	0	0	6
s 1	-1	-2	0	0	1	0
t	1	0	0	1	0	12
Z	1	3/2	1	0	0	9
f	2	5	0	0	0	36

Question 3

(a)**Convex set**: A set M is called convex if for all two points x and y in M, all points of the line segment $\lambda x + (1 - \lambda)y$, $0 < \lambda < 1$, lie in M.

		5 Marks
(b) Concave y in M,	function : A function f is called concave on a set M if for all tw $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y), \ 0 < \lambda < 1$	vo points x and
(c)Theorems: (i)The mini be unique	: imum of a strict convex function f on a convex set $\mathbf{G} \subset \mathbf{R}^{\mathbf{n}}$ if e ie.	5 Marks exist must
(ii)The min attained a	thimum of a non constant function f on a convex set $\mathbf{G} \subset \mathbf{R}^{\mathbf{n}}$ of a tinterior point.	20 Marks
		20 Marks

Question 4

Let x be the number of standard model and y be the number of deluxe model. Then, the objective function is: f = 6x + 11y

	Х	y a	vailable	
cutter time	2	1	104	
finisher time	1	2	76	
The constraints a	are:	$x + 2y \le 76,$	$2x + y \le 104$	
Then, the LP mo	del i	s: maximize	f = 6x + 11y	
		s.t	$x + 2y \le 76$	

$$2x + y \le 104$$
, $x, y \ge 0$

This LP problem can be solved graphically as shown in the Figure.

The maximum profit is LE 440 at the optimal solution (44,16).

------30 Marks

Dr. Mohamed Eid